
Macintosh Technical Notes

New Technical Notes

Developer Support


®Macintosh

International Canceling
Text M.TE.InternationalCancel

Written by: John Harvey February 1990

This Technical Note describes potential problems canceling operations with the Command-
period key sequence and international keyboards.

Where Did That Key Go?

Canceling an operation,  from printing to compiling,  has always been done with the key
sequence Command-period.  The problem with this is that on some international systems,
one needs to hold the Shift  key down to produce a  period.   Many keyboard mappings,
including that of the U.S., ignore the Shift key when the Command key is down.  In other
words, on a system where a period (.) is a shifted character (e.g., Italian) pressing Command-
Shift-KeyThatMakesAPeriod does not generate the ASCII code for a period.  Instead, the
keyboard mapping software generates the ASCII code for the unshifted character.   If  an
application is looking for Command-period to cancel some time intensive operation, and an
international user types the shifted key sequence that normally produces a period along with
the  Command  key,  the  application  is  going  to  miss  that  request  unless  it  takes  special
precautions.

A Bit Confusing (to me at least)

The solution to this potential international disaster is to strip the Command key out of the
modifiers, and then run the key code back through the keyboard mapping software.  The trap
_KeyTrans makes this procedure very easy.  _KeyTrans takes as parameters a pointer to
a 'KCHR' resource (see M.TB.KeyMapping), a word which contains the keycode and the
modifier bits, and a word which serves as a state variable.

One note on the result returned by  _KeyTrans.  Inside Macintosh, Volume V-195, The
Toolbox Event Manager, states, “ASCII 1 is the ASCII value of the first character generated
by the key code parameter.”  This statement is followed by an illustration (Figure 7 on page
V-195) which shows ASCII 1 as the low byte of the high word in the long word result.
Although this statement and the accompanying illustration are correct, they have mislead a
number of people (me for one).
Developer Technical Support February 1990



Macintosh Technical Notes

It is dangerous to expect the character code in one particular word of the long word result.
In fact, the architecture of the _KeyTrans trap does not specify which word contains the
character code in which you might be interested.  This is because the  _KeyTrans trap’s
primary purpose is to create a package that can be used to build a key-down event, and the
Toolbox Event Manager just doesn’t care about particular keys.  In fact, it is possible to get a

Developer Technical Support February 1990



Macintosh Technical Notes

result from _KeyTrans that contains character codes in both words.  This is how dead keys
are handled.

But how does one handle a particular character, specifically a period?  The strategy adopted
in the sample function in this Note is to check both words of the result.  If a period exists in
either  word  and  the  Command  key  is  down,  it  is  counted  as  a  Command-period  key
sequence.

Now that everything is straight about parameters and results, it’s time to look at some sample
code.  The code fragment which follows ensures that you get that period regardless of the
state of the modifier keys.

MPW Pascal

CONST
 kMaskModifier = $FE00; {need to strip command key from Modifiers}
 kMaskVirtualKey = $0000FF00; {get virtual key from event message}
 kMaskASCII1 = $00FF0000;
 kMaskASCII2= $000000FF; {get key from KeyTrans return}
 kKeyUpMask  = $0080;
 kPeriod = ORD('.');

TYPE
 EventPtr = ^EventRecord;

FUNCTION CmdPeriod(theEvent: EventPtr): Boolean;
VAR
 keyCode     : Integer;
 virtualKey,
 keyInfo,
 lowChar,
 highChar,
 state,
 keyCId      : Longint;
 hKCHR       : Handle;

BEGIN

 CmdPeriod  := FALSE;

 IF ( theEvent^.what = keyDown ) | ( theEvent^.what = autoKey ) THEN BEGIN

   {see if the command key is down.  If it is, get the ASCII }
   IF  BAND(theEvent^.modifiers,cmdKey) <> 0  THEN BEGIN

     virtualKey := BAND(theEvent^.message,kMaskVirtualKey) DIV 256;
   {strip the virtual key by ANDing the modifiers with our mask}
     keyCode := BAND(theEvent^.modifiers,kMaskModifier);
     keyCode := BOR(keyCode,kKeyUpMask);  {let KeyTrans think it was a keyup event, this
                                           will keep special dead key processing from 
                                           occurring }
   {Finally OR in the virtualKey}
     keyCode := BOR(keyCode,virtualKey);
     state := 0;

     keyCId := GetScript( GetEnvirons(smKeyScript), smScriptKeys);

     {read the appropriate KCHR resource }
     hKCHR := GetResource('KCHR',keyCId);

     IF hKCHR <> NIL THEN BEGIN
       { we don't need to lock the resource since KeyTrans will not move memory }
       keyInfo := KeyTrans(hKCHR^,keyCode,state);

Developer Technical Support February 1990



Macintosh Technical Notes

       ReleaseResource(hKCHR);
     END
     ELSE
       {if we can't get the KCHR for some reason we set keyInfo to the message field.  This 
        ensures that we still get the Cancel operation on systems where '.' isn't shifted.}
       keyInfo := theEvent^.message;

     LowChar := BAND(keyInfo,kMaskASCII2);
     HighChar := BSR(BAND(keyInfo,kMaskASCII1),16);

     IF ( LowChar = kPeriod ) | (HighChar = kPeriod) THEN 
          CmdPeriod := TRUE;
   END;
 END;
END;

MPW C

#define kMaskModifiers  0xFE00 // we need the modifiers without the command key for KeyTrans
#define kMaskVirtualKey 0x0000FF00 //get virtual key from event message for KeyTrans
#define kUpKeyMask      0x0080
#define kShiftWord      8 //we shift the virtual key to mask it into the keyCode for KeyTrans
#define kMaskASCII1     0x00FF0000 // get the key out of the ASCII1 byte
#define kMaskASCII2     0x000000FF  //get the key out of the ASCII2 byte
#define kPeriod         0x2E // ascii for a period

Boolean CmdPeriod( EventRecord *theEvent )
{

 Boolean  fTimeToQuit;
 short    keyCode;
 long     virtualKey, keyInfo, lowChar, highChar, state, keyCId;
 Handle   hKCHR;

 fTimeToQuit = false;

 if (((*theEvent).what == keyDown) || ((*theEvent).what == autoKey)) {

 // see if the command key is down.  If it is, find out the ASCII
 // equivalent for the accompanying key.

 if ((*theEvent).modifiers & cmdKey ) {

   virtualKey = ((*theEvent).message & kMaskVirtualKey) >> kShiftWord;
   // And out the command key and Or in the virtualKey
   keyCode    = ((*theEvent).modifiers & kMaskModifiers)  |  virtualKey;
   state      = 0;

   keyCId     = GetScript( GetEnvirons(smKeyScript), smScriptKeys );
   hKCHR      = GetResource( 'KCHR', keyCId );

   if (hKCHR != nil) {
     /* Don't bother locking since KeyTrans will never move memory */
     keyInfo = KeyTrans(*hKCHR, keyCode, &state);
     ReleaseResource( hKCHR );
   }
   else
    keyInfo = (*theEvent).message;

   lowChar =  keyInfo &  kMaskASCII2;
   highChar = (keyInfo & kMaskASCII1) >> 16;

Developer Technical Support February 1990



Macintosh Technical Notes

   if (lowChar == kPeriod || highChar == kPeriod)
     fTimeToQuit = true;

 }  // end the command key is down
}  // end key down event

return( fTimeToQuit );
}

What About That Resource

The  astute  observer  may  have  noticed  that  the  code  example  requires  that  you  read  a
resource.  Although this certainly isn’t that big of a deal, it is always nice when you can cut
down  on  disk  accesses.   In  System  7.0  a  verb  is  added  that  can  be  used  to  get
_GetEnvirons to return a pointer to the current 'KCHR'.  The verb is defined and used
as follows:

Pascal

CONST
   smKCHRCache =  38;

   KCHRPtr := GetEnvirons(smKCHRCache);

C

#define smKCHRCache 38

   KCHRPtr = GetEnvirons(smKCHRCache);

Unfortunately, in system software prior to 7.0, you must use _GetResource as demonstrated above to obtain the current 'KCHR' resource.
However, since _GetEnvirons always returns zero when passed a verb it does not recognize, you can build System 7.0 compatibility into
your application without having to check which system software is running.  To do this, you could modify the routines as follows:

Pascal
CONST {define our own constant until System 7.0 headers ship.  At that point, if you
      have not shipped, you can put in the real constant}
   NewVerb_smKeyCache = 38;
VAR
   KCHRPtr : Ptr;

   KCHRPtr := Ptr(GetEnvirons(NewVerb_smKeyCache ));
   hKCHR   := NIL;  {set to NIL before starting}

   IF KCHRPtr = NIL THEN BEGIN  {we didn't get the ptr from GetEnvirons}
     keyCId := GetScript(GetEnvirons(smKeyScript), smScriptKeys);

     {read the appropriate KCHR resource }
     hKCHR := GetResource('KCHR',keyCId);
     KCHRPtr := hKCHR^;
   END;

   IF KCHRPtr <> NIL THEN BEGIN
     { we don't need to lock the resource since KeyTrans will not move memory }
     keyInfo := KeyTrans(KCHRPtr,keyCode,state);
     IF hKCHR <> NIL THEN
       ReleaseResource(hKCHR);
   END

Developer Technical Support February 1990



Macintosh Technical Notes

C

/* again we define our own constant for now */
#define NewVerb_smKeyCache 38

Ptr KCHRPtr;

   hKCHR = nil;  /* set this to nil before starting */
   KCHRPtr = (Ptr)GetEnvirons(NewVerb_smKeyCache );

   IF ( !KCHRPtr ) {
     keyCId = GetScript( GetEnvirons(smKeyScript), smScriptKeys);

     hKCHR   = GetResource('KCHR',keyCId);
     KCHRPtr = *hKCHR;
   };

   IF (KCHRPtr) {
     keyInfo := KeyTrans(KCHRPtr ,keyCode,state);
     if (hKCHR)
       ReleaseResource(hKCHR);
   }

Further Reference:
• Inside Macintosh, Volume V, The Script Manager
• Inside Macintosh, Volume V, The Toolbox Event Manager
• M.TB.KeyMapping

Developer Technical Support February 1990


